MRI carotid plaque imaging predicts future stroke in patients with mild to moderate stenosis – ICAD study

Richard Simpson, Senior Clinical Vascular Scientist and Stroke Association Junior Research Training Fellow
Hosseini AA, Bath PM, MacSweeney ST, Auer DP.

Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham and Department of Vascular Surgery, Nottingham University Hospitals NHS Trust
Introduction

• Carotid Endarterectomy reduces risk of recurrent stroke in patients with symptomatic carotid artery stenosis
Introduction

Pooled analysis of NASCET, ECST and VA trials: n = 6092 patients
Introduction

Pooled analysis of NASCET, ECST and VA trials: n = 6092 patients
Introduction

Pooled analysis of NASCET, ECST and VA trials: n = 6092 patients
Pooled analysis of NASCET, ECST and VA trials: n = 6092 patients
Introduction

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Events/patients</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>92/890</td>
<td>0.46</td>
<td>0.41–0.51</td>
</tr>
<tr>
<td>Female</td>
<td>59/436</td>
<td>0.84</td>
<td>0.63–1.12</td>
</tr>
<tr>
<td>Time since last event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 weeks</td>
<td>30/284</td>
<td>0.35</td>
<td>0.31–0.40</td>
</tr>
<tr>
<td>2–4 weeks</td>
<td>29/233</td>
<td>0.57</td>
<td>0.45–0.73</td>
</tr>
<tr>
<td>4–12 weeks</td>
<td>56/512</td>
<td>0.63</td>
<td>0.52–0.78</td>
</tr>
<tr>
<td>>12 weeks</td>
<td>36/297</td>
<td>0.85</td>
<td>0.58–1.26</td>
</tr>
<tr>
<td>Time since last event: males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 weeks</td>
<td>20/178</td>
<td>0.39</td>
<td>0.33–0.47</td>
</tr>
<tr>
<td>2–4 weeks</td>
<td>16/139</td>
<td>0.45</td>
<td>0.35–0.58</td>
</tr>
<tr>
<td>4–12 weeks</td>
<td>37/365</td>
<td>0.52</td>
<td>0.43–0.64</td>
</tr>
<tr>
<td>>12 weeks</td>
<td>19/208</td>
<td>0.47</td>
<td>0.36–0.61</td>
</tr>
<tr>
<td>Time since last event: females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 weeks</td>
<td>10/106</td>
<td>0.28</td>
<td>0.23–0.33</td>
</tr>
<tr>
<td>2–4 weeks</td>
<td>13/94</td>
<td>1.00</td>
<td>0.44–2.26</td>
</tr>
<tr>
<td>4–12 weeks</td>
<td>19/147</td>
<td>1.04</td>
<td>0.54–1.99</td>
</tr>
<tr>
<td>>12 weeks</td>
<td>17/89</td>
<td>4.30</td>
<td>1.48–12.46</td>
</tr>
<tr>
<td>Total</td>
<td>151/1326</td>
<td>0.55</td>
<td>0.50–0.62</td>
</tr>
</tbody>
</table>
Introduction

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Events/patients</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surgical</td>
<td>Medical</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>92/890</td>
<td>172/784</td>
<td>0.46</td>
</tr>
<tr>
<td>Female</td>
<td>59/436</td>
<td>55/346</td>
<td>0.84</td>
</tr>
<tr>
<td>Time since last event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 weeks</td>
<td>30/284</td>
<td>80/269</td>
<td>0.35</td>
</tr>
<tr>
<td>2–4 weeks</td>
<td>29/233</td>
<td>41/193</td>
<td>0.57</td>
</tr>
<tr>
<td>4–12 weeks</td>
<td>56/512</td>
<td>76/450</td>
<td>0.63</td>
</tr>
<tr>
<td>>12 weeks</td>
<td>36/297</td>
<td>30/218</td>
<td>0.85</td>
</tr>
<tr>
<td>Time since last event: males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 weeks</td>
<td>20/178</td>
<td>52/185</td>
<td>0.39</td>
</tr>
<tr>
<td>2–4 weeks</td>
<td>16/139</td>
<td>33/136</td>
<td>0.45</td>
</tr>
<tr>
<td>4–12 weeks</td>
<td>37/365</td>
<td>60/317</td>
<td>0.52</td>
</tr>
<tr>
<td>>12 weeks</td>
<td>19/208</td>
<td>27/146</td>
<td>0.47</td>
</tr>
<tr>
<td>Time since last event: females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 weeks</td>
<td>10/106</td>
<td>28/84</td>
<td>0.28</td>
</tr>
<tr>
<td>2–4 weeks</td>
<td>13/94</td>
<td>8/57</td>
<td>1.00</td>
</tr>
<tr>
<td>4–12 weeks</td>
<td>19/147</td>
<td>16/133</td>
<td>1.04</td>
</tr>
<tr>
<td>>12 weeks</td>
<td>17/89</td>
<td>3/72</td>
<td>4.30</td>
</tr>
<tr>
<td>Total</td>
<td>151/1326</td>
<td>227/1130</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Introduction

- Unstable/vulnerable carotid plaque
- Beyond the luminal stenosis ➔ Plaque imaging

Introduction

Aim & outcomes

• To determine whether MRI-PH can predict future stroke in patients with symptomatic mild-moderate carotid stenosis

• 1° outcome
 – Ipsilateral ischaemic stroke or DWI+TIA

• 2° outcomes
 – Stroke only
 – All recurrent ipsilateral cerebrovascular event
Methods

- Prospective observational study
 - Adults with a recent TIA, stroke or AmFx
 - Symptomatic 30-99% carotid stenosis
 - No planned carotid intervention
 - Excluded if contraindication to MRI, unable to consent, planned CEA

 - Cerebrovascular events, vascular risk factors, comorbidities and medications
 - 6 monthly clinical/telephone follow-up
Methods

• Brain and carotid imaging
 – DTI, FLAIR, DWI, fMRI
 – Time of Flight MRA ± CE-MRA

• MRI carotid wall imaging
 – Coronal T_1-weighted 3D MPRAGE (Black-blood and fat-saturation)

• Signal Intensity Ratio $= \frac{SI_{\text{plaque}}}{SI_{\text{muscle}}}$
 – MRIPH+ve if > 1.5
 – MRIPH-ve if < 1.5
Results

Over 4000 were patients screened

38 excluded:
10 did not have MRI
1 poor quality MRI
2 <30% carotid stenosis
5 occluded ipsilateral carotid artery
12 asymptomatic carotid disease
6 contralateral carotid stenosis
2 posterior circulation stroke

190 agreed to participate

152 recruited (92M, 60F)

1 lost to follow-up
17 70-99% stenosis

134 patients in 30-69% analysis
79 males, 55 females. Median age: 76
Results

- MRIPH in ICAD study
Results

- MRIPH in ICAD study
Results

- 47 (35.1%) patients showed ipsilateral MRI-PH
 - Of which 36 were male; $\chi^2 = 9.3$, $P=0.002$

<table>
<thead>
<tr>
<th>Ipsilateral carotid stenosis (P=0.97)</th>
<th>MRIPH positive</th>
<th>MRIPH negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-49%</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>50-59%</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>60-69%</td>
<td>8</td>
<td>14</td>
</tr>
</tbody>
</table>

- No other demographic or risk factor was significantly associated with MRIPH presence.
Results

- Follow-up period
 - Median = 656 days, IQR = 349-994
 - For 30-69% stenosis

<table>
<thead>
<tr>
<th>Event</th>
<th>MRIPH positive</th>
<th>MRIPH negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>DWI+ TIA</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TIA</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AmFx</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CEA</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Death</td>
<td>7</td>
<td>12</td>
<td>19</td>
</tr>
</tbody>
</table>
Results

- Presence of MRIPH
 - Infarction: $HR = 4.4$
 (95%CI 1.36 – 14.43, $P=0.013$)
 - Stroke only: $HR = 4.08$
 (95% CI 1.23 – 13.58, $P=0.02$)

- Controlling for stenosis
 - HR for stroke was 4.69
 (95%CI 1.40–15.74, $P=0.012$)

![Graph showing cumulative survival against follow-up days with different lines representing different conditions.](image)
Results

- For 50-69% stenosis
 - 72 participants
 - 9 strokes
 - HR = 4.1
 95%CI 1.01 – 16.81, P=0.049
 - Risk difference 35% at 3 years
Results

- For 30-49% stenosis
 - 62 participants
 - 4 infarctions
 - HR = 4.6
 \[95\% CI \ 0.47 \ – \ 44.3, \ P=0.19\]
 - Low power due to number of events
Conclusions

• In symptomatic patients with moderate carotid stenosis, MRI-PH is a significant predictor of future cerebral infarction and stroke.

• This study builds on previous evidence for MRIPH in moderate stenosis*

Conclusions

• MRI-PH status can thus offer decision support when there is clinical uncertainty regarding the benefit of carotid intervention.
 – MRIPH is stable for up to 2 years*

• Inclusion of MRIPH into clinical risk tools.

• Easily accessible and quick technique, MRIPH should be implemented into clinical practice as standard care.

*Simpson et al, AJNR, 2015;
Acknowledgements

– Dr Akram Hosseini
– Mr Nishath Altaf
– Professor Philip Bath
– Mr Shane MacSweeney
– Professor Dorothee Auer
– Dr Robert Dineen

– Anita French
– Dr Daniel Rodriguez
– Dr Solomon Akwei
– Dr Tim England
– Dr Mohana Maddula

• Funders
 – Stroke Association Junior Research Training Fellowship
 – Rosetrees Trust
 – Nottingham Vascular Research Fund
 – NIHR Research for Patient Benefit programme

Declaration: This presentation presents independent research funded by the NIHR under its RfPB Programme (Ref: PB-PG-0107-11438). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. None of the sponsors had any role in study design, data collection, data analysis, data interpretation, writing the report, or in decision making to submit for publication.